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Abstract
We study electron transport in a normal metallic ring modelled by a tight-binding lattice
Hamiltonian, coupled to two electron reservoirs. First, Büttiker’s model of incorporating
inelastic scattering, and hence decoherence and dissipation, has been extended by connecting
each site of the open ring to one-dimensional leads for uniform dephasing in the ring threaded
by a magnetic flux. We show with this extension that conductance remains symmetric under
flux reversal, and Aharonov–Bohm oscillations with changing magnetic flux reduce to zero as a
function of the decoherence parameter, thus indicating dephasing in the ring. This extension
enables us to find local chemical potential profiles of the ring sites with changing magnetic flux
and the decoherence parameter in an analogous way to the four-probe measurement. The local
electrochemical potential oscillates in the ring sites because of quantum-interference effects.
This predicts that the measured four-point resistance also fluctuates and even can be negative.
Then we point out the role of the electronic eigenstates of the closed ring in the persistent
current around Fano antiresonances of an asymmetric open ring, for both ideal leads and tunnel
barriers. Determining the real eigenvalues of the non-Hermitian effective Hamiltonian of the
ring, we show that there exist discrete bound states in the continuum of scattering states for the
asymmetric ring even in the absence of magnetic flux. Our approach involves quantum
Langevin equations and non-equilibrium Green’s functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The persistent current in equilibrium and the Aharonov–Bohm
(AB) oscillations of conductance with changing magnetic
flux, realized in a normal metallic ring, are two important
achievements of mesoscopic physics. Büttiker et al [1]
predicted the presence of persistent current in a closed normal
metallic ring threaded by a magnetic flux φ in the coherent
regime. The magnetic flux breaks down the time reversal
symmetry of the Schrödinger equation and hence there exists a
persistent current whenever the flux φ is not equal to a multiple
of φ0/2 where φ0 is the universal flux quantum. Gefen et al
[2] connected two current leads to such a one-dimensional
ring and calculated the conductance G(φ) between the two
leads from the Landauer formula. The conductance shows AB-
like oscillations with changing magnetic flux φ with period φ0

because of interference of the electron wavefunctions coming
through the two branches of the ring at the lead. Another
kind of AB effect with principal period φ0/2 is present

in the ring because of interference of time reversed paths
encircling the ring. These oscillations persist even when strong
elastic scattering is present in the ring. Both the persistent
current [3, 4] in a closed ring and the AB oscillations of
conductance [5] in an open ring were experimentally realized
at a temperature of a few millikelvin.

In real systems inelastic scattering is always present
because of electron–phonon interactions [6] above about 1 K,
whereas electron–electron interactions are expected to play the
dominant role at low temperatures in the absence of extrinsic
sources of decoherence such as magnetic impurities. Certainly
inelastic scattering introduces decoherence, and both the above
phenomena are diminished. Büttiker [7–10] proposed a
phenomenological model of inelastic scattering, and hence
dissipation and dephasing in the ring. This model is quite
similar to the self-consistent reservoirs model, introduced by
Bolsterli et al [11, 12] in the context of heat transport. In
Büttiker’s model, the ring is connected to a reservoir of
electrons of chemical potential μ whose value is determined
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self-consistently by demanding that the average electron
current from the ring to this side reservoir should be zero.
This conserves the total number of electrons in the original
system. In this model the side reservoir destroys the coherence
of conducting electrons by removing them from the transport
channel and then re-injecting them in the channel with a
different phase and energy; thus dephasing and dissipation can
both occur. With a single Büttiker probe, the conductance of
the open ring enclosing a magnetic flux satisfies the Onsager
reciprocity relation, i.e. G(φ) = G(−φ). But in this
model dephasing occurs locally in space whereas in a realistic
system it happens uniformly throughout the ring. There is
another popular model [13] that incorporates dephasing, in
which a spatially uniform imaginary potential is added in
the Hamiltonian of the system which again removes electrons
from the phase coherent transport channel. This model suffers
from the drawback in that it violates the above stated Onsager
reciprocity relation. Brouwer and Beenakker [14] removed
the shortcomings in the imaginary potential model by re-
inserting the carriers into the conducting channel to conserve
particles. Then they compared the two above stated models
for dephasing in a chaotic quantum dot. We also emphasize
that they consider a single but multi-channel voltage probe, so
a more careful formulation of uniform dephasing with voltage
probes is clearly desirable.

Here we do a simple extension to get uniform dephasing
in the ring with Büttiker probes. All the sites of the ring
modelled by the tight-binding Hamiltonian are connected with
one-dimensional electron reservoirs which are also modelled
by the tight-binding Hamiltonian. Two distant side reservoirs
with fixed chemical potential μL and μR act as source and
drain, respectively. The chemical potentials of the other
reservoirs are fixed self-consistently by imposing the condition
of zero current. Now in this extended model decoherence
occurs uniformly throughout space. We show that again
the conductance G(φ) is symmetric under flux reversal, and
the AB oscillations of G(φ) decay to zero as the strength
of coupling, γ ′, between the side reservoirs and the ring is
increased. One nice consequence of this extension is that
we can find the exact chemical potential profiles of the ring’s
sites by changing the magnetic flux by tuning the coupling γ ′
to almost zero. This is similar to a four-terminal resistance
measurement with non-invasive voltage probes [15].

Persistent current in an open ring is realized even
without any magnetic flux in the presence of a transport
current [16, 17]. Two electron reservoirs with different
chemical potentials are coupled with a mesoscopic ring in such
a way that the lengths of the two arms of the ring between
two contacts are different. A circulating current flows through
the ring around certain Fermi energy values where the total
transmission coefficient between two contacts goes to zero. We
show here that at these antiresonance energy values there exist
bound states in the continuum of scattering states (BIC) for the
case of ideal leads. For single channel transport the energies of
the bound states are exactly the same as those of the electronic
eigenstates of the closed ring. We also discuss this issue for
tunnel barriers.

We use the formalism introduced by Dhar, Shastry and
Sen recently in two papers [18, 19]. They derived both the

Landauer results and, more generally, the non-equilibrium
Green’s function (NEGF) results on transport using the
quantum Langevin equations approach. It is numerically easier
to deal with the multiple reservoirs and disorder with this
approach.

The outline of the paper is as follows. First, in section 2,
we define the general model and describe how we get different
current expressions in the linear response regime using the
quantum Langevin approach. In section 3 we solve the
extended Büttiker model for uniform dephasing. Next, in
section 4, we discuss the issues regarding the persistent current
in an open asymmetric ring and bound states in a continuum.
Finally we conclude with a discussion in section 5.

2. Model and general results

We consider a one-dimensional mesoscopic ring modelled by
the tight-binding lattice Hamiltonian. Two distant sites 1
and M of the ring are connected to two infinite reservoirs
with specified chemical potentials μ1 and μM . They are,
respectively, source and drain. Each arm of the open ring
between these two contacts has N1 and N2 sites, each of
which is coupled to an infinite reservoir at chemical potential
μl and small finite temperature T (see figure 1). All the
reservoirs are also modelled by a one-dimensional tight-
binding Hamiltonian. The total Hamiltonian of the system
consisting of the ring and all the reservoirs is given by

H = Hr +
N∑

l=1

Hl
R +

N∑

l=1

V l
rR,

where

Hr = −
N∑

l=1

γ (e−iθc†
l cl+1 + eiθc†

l+1cl)

Hl
R = −γl

∞∑

α=1

(cl†
α cl

α+1 + cl†
α+1cl

α) l = 1, 2 . . . N

V l
rR = −γ ′

l (c
l†
1 cl + c†

l cl
1) l = 1, 2 . . . N.

(2.1)
Here cl and cl

α denote, respectively, electron annihilation
operators on the closed ring and on the lth reservoir. Due to
the periodic geometry of the ring, cl = cl+N and contribution
of magnetic flux φ have been included in θ = 2πφ

Nφ0
. The

Hamiltonian of the ring is denoted by Hr, that of the lth
reservoir by Hl

R and the coupling between the ring and the
lth reservoir is V l

rR. The parameters γ ′
l control the hopping

of electrons between reservoirs and the ring. Also the total
number of sites in the ring N = N1 + N2 + 2.

Following [19, 20], we get the steady state solution of the
ring variables in the Fourier domain,

c̃l(ω) =
N∑

m=1

G+
lm(ω)η̃m(ω), (2.2)

where

c̃l(ω) = (1/2π)
∫ ∞

−∞
dt eiωt cl(t), G+ = h̄

γ
Z−1,
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Figure 1. A schematic description of the model.

and

Zlm = h̄

γ
(ω −	+

l )δlm + e−iθ δl,m−1 + eiθ δl,m+1

+ eiθ δl1δmN + e−iθ δlN δm1.

G+(ω) is the Green’s function of the full system (ring and
reservoirs) and for points on the ring can be written in the
form G+(ω) = [ω − Hr/h̄ − 	̄+]−1 where 	̄+, defined by its
matrix elements 	̄+

lm = 	+
l δlm , is a self-energy term modelling

the effect of infinite reservoirs on the isolated single particle
ring Hamiltonian Hr. 	

+
l (t) = (

γ ′
l

h̄ )
2 gl+

1,1(t) where gl+
1,1(t)

is the single particle Green’s function of the l th reservoir at
site 1. Here η̃(ω) is the noise characterizing reservoir’s initial
distribution. The effective ring Hamiltonian is Hr + h̄	̄+,
which can be shown to be non-Hermitian. We will use it to
find bound states in a later section. Now one important point to
notice is that, for θ not equal to an integral multiple of π, Zlm

is not a symmetric matrix. So the presence of magnetic flux
φ breaks down the symmetric property of G+(ω) whenever
φ is not equal to an integral multiple of Nφ0/2. This is a
consequence of the loss of the time reversal symmetry of the
problem in the presence of magnetic flux.

In the present work we are interested in the electron
current from the reservoirs to the ring and also the current in
the ring. For this purpose we first define the electron density
operator on the ring sites and then use the continuity equation
to get the corresponding current operators. Let us define jl as
the electron current between sites l, l + 1 on the ring and jr−l

as the electron current from the ring to the lth reservoir. These
are given by the following expectation values:

jl = ieγ

h̄
〈eiθc†

l+1cl − e−iθc†
l cl+1〉

jr−l = −ieγ ′
l

h̄
〈c†

l cl
1 − cl

1
†
cl〉

where e is the charge of the electron. Using the general solution
in equation (2.2) and the noise–noise correlation [20], we can
do the above averaging and find

jl =
N∑

m=1

−1

2π

∫ ∞

−∞
dωFlm( fl − fm) (2.3)

jr−l =
N∑

m=1

1

2π

∫ ∞

−∞
dω Tlm ( fl − fm) (2.4)

with

Flm = 2π ieγ γ ′
m

2

h̄3
(eiθG+

lm G−
ml+1 − e−iθG+

l+1m G−
ml)ρm

and

Tlm = 4π2eγ ′
l

2
γ ′

m
2

h̄4 |G+
lm |2ρlρm,

where G−
lm = G+

ml
∗

and fl is the Fermi function. The chemical
potentials of the reservoirs at the sites of the ring 1, M are
specified by μ1 = μL and μM = μR. Here we restrict
ourselves to low temperature and the linear response regime
where the applied chemical potential difference�μ = μR−μL

is small, i.e. �μ � μL,R and kBT � μL,R. For notational
simplicity we choose γl = γ for l = 1, 2 . . . N and γ ′

l = γ ′
for l = 2, 3 . . .M − 1,M + 1, . . . N . With this assumption,
the reservoirs includingthe source and drain will have the same
Green’s function and density of states and we will use the
notation gl+

1,1(ω) = g+(ω) and ρl(ω) = ρ(ω) [20].
In the linear response regime, taking the Taylor expansion

of the Fermi functions f (ω,μl , T ) about the mean value μ =
(μL +μR)/2, equations (2.3) and (2.4) reduce to the following
set of equations:

jl = −1

2π h̄

N∑

m=1

Flm (μl − μm) (2.5)

3
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Figure 2. Plot of the conductance G(φ) of an open symmetric ring
with a single Büttiker probe. The total number of sites in the ring
N = 20 and γ ′ = 1.5.

jr−l = 1

2π h̄

N∑

m=1

Tlm (μl − μm)

for l = 1, 2 . . . N, (2.6)

where Flm and Tlm are evaluated at ω = μ/h̄. These are linear
equations in {μl} and are straightforward to solve numerically.
In the next section we will consider the case of an open ring in
the presence of uniform dephasing and dissipation. Later, we
will study the persistent current in an asymmetric open ring in
the absence of both magnetic flux and decoherence by external
reservoirs.

3. Extended Büttiker model for uniform dephasing in
an open ring enclosing magnetic flux

Before presenting the results for uniform dephasing in the open
ordered ring threaded by a magnetic flux φ, we first try to
address the issue of why we require an extension of Büttiker’s
single probe model, apart from the construction of a more
realistic microscopic model. In this section we work out all the
results for a symmetric open ordered ring, i.e. the number of
sites in the two arms of the ring between two contacts at 1 and
M , are equal, or N1 = N2. All the results remain unchanged
for the asymmetric case from the physics point of view. Also
we keep ideal leads at 1 and M , i.e. γ ′

1 = γ ′
M = γ . We take

a single Büttiker voltage probe and insert it in two positions
of the open ring, once in the bulk of the arms between the
two contacts and then at the boundary of the arms. Next the
chemical potential of this voltage probe is determined from
the self-consistent condition of zero average electron current
from this probe to the ring. From equation (2.6) we set
jr−l = 0, where l is the position of the Büttiker probe. Then the
equation is solved numerically for the chemical potential of the
self-consistent reservoir with local density of states and total
Green’s function as given in the appendix. Finally we calculate
the conductance G(φ) between two contacts at 1 and M from
the same equation (2.6) for jr−l but with l = 1 or M . In figure 2
we plot G(φ) with changing magnetic flux for two different
positions of the Büttiker probe in the bulk or boundary of the
arms of the open ring. In both cases coupling γ ′ of the probe

Figure 3. Plot of the AB oscillations of conductance G(φ) of the
open symmetric ring with uniform dephasing for different strengths
of coupling γ ′, with N = 20.

with the ring is the same. Though conductance profiles for the
two above stated cases are not much different qualitatively, a
single probe still dephases almost twice as much when in the
boundary as in the bulk. So there is distinct non-universality in
the results from the context of the quantity of dephasing with a
single Büttiker probe depending on its position in the ring.

Now we work out the extended Büttiker model with all the
sites between contacts 1 and M being coupled to side reservoirs
to simulate the other degrees of freedom present in a real ring.
Again to obtain the chemical potentials of the side reservoirs
we fix the average electron current from these reservoirs to the
ring to be zero independently. So we solve the following N −2
linear equations for N − 2 unknown chemical potentials {μl},

jr−l = 0 for l = 2, 3, . . . ,M−1,M+1, . . . , N. (3.1)

Once the chemical potential profile of the side reservoirs is
found, we use equation (2.6), with l = 1 or M , to determine
the electron current from the source to the drain. First, we carry
out both the above jobs numerically. In all the numerical results
presented in this paper we set the electrical charge and Planck
constant h̄ as unity. In figure 3 we plot conductance G(φ) as
a function of enclosed magnetic flux for different values of the
coupling γ ′ of the side reservoirs with the ring. Here we define
conductance as the total current from the source to the drain
divided by the chemical potential difference between them,
�μ = μR −μL. Clearly AB oscillations of conductance G(φ)
decay with increasing decoherence parameter γ ′, indicating
dephasing. Also the introduction of uniform dephasing
does not destroy Onsager’s reciprocity relation, i.e. G(φ) =
G(−φ). Using the similarity between different terms of the
full Green’s function and G+

lm(ω)|φ = G+
ml(ω)|−φ , we can

verify that under flux reversal the solutions of equations (3.1)
transform as

μl(φ) = μ1 + μM − μl′(−φ) for 1 < l < M, (3.2)

μl(φ) = μ1+μM −μN+l′ (−φ) for M < l < N, (3.3)

where l ′ = M+1−l. With these transformations and the above
mentioned Green’s function properties, we see that the total
current, i.e. conductance, remains invariant under φ → −φ.

4
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Figure 4. Plot of the local chemical potential profiles of the ring sites
for different values of the decoherence parameter γ ′ with φ tending
to zero, N = 20 and site 21 ≡ site 1.

As discussed earlier in the introduction, one elegant
outcome of this extension is that we can now evaluate local
chemical potential profiles of the ring’s sites with changing
magnetic flux by tuning γ ′ tending to zero. This shows
analogies to a four-probe measurement of a voltage drop in
a nanoscale system [15]. First, in figure 4, we give solutions
of the chemical potentials from equations (3.1) with magnetic
flux (φ) tending to zero. It shows large oscillations in the
local chemical potential profile for small γ ′ that become
flatter and flatter with increasing γ ′. Finally the profile
becomes completely linear for large γ ′, signalling Ohmic
incoherent transport of electrons in this regime, which has
been discussed in great detail in our earlier work [20]. The
oscillations in the local chemical potential profile for tiny
decoherence can be argued to be due to the periodic geometry
of the ring. A electron wave incident from the right lead
gives two contributions to the current of the middle voltage
probe measuring local chemical potential. First there is
direct transmission into the probe, and secondly a portion
of the carriers which are transmitted past the left lead by
travelling through the other arm of the ring enter the voltage
probe. It is the superposition of these two interfering electron
waves which determines transmission in the voltage probe.
Following Büttiker [21, 22] we call this phase-sensitive voltage
measurement. For slightly larger dephasing, the flat behaviour
of the chemical potential profile in the bulk of the arms and
jumps at the contacts is a signature of an intermediate regime
between ballistic and Ohmic transport. This pattern was quite
nicely explained using a simple persistent random walk model
in our previous paper [20]. In figure 5 local chemical potential
profiles of the ring with changing magnetic flux φ are given
for the completely coherent case (γ ′ = 0). For φ equal to an
integer multiple of φ0, the chemical potential profiles are the
same. Again for φ an integer multiple of φ0/2, the chemical
potential profiles are similar. In both cases, the profiles are
symmetric (mirror) about the contacts for the symmetric ring.

Now we derive an analytical expression for the phase-
sensitive local chemical potential profile [23] of the ring sites
with changing magnetic flux as in figure 5. We couple a single
Büttiker probe invasively (though the final result is insensitive

Figure 5. Plot of the local chemical potential profiles of the ring sites
for different magnetic flux with γ ′ tending to zero, N = 20 and site
21 ≡ site 1.

to the coupling strength γ ′) with a middle site of the open
ring. We then determine the chemical potential (μl) of the
probe, i.e. the corresponding site, from the self-consistent
equation (2.6). Moving the probe over all middle sites of the
ring we can evaluate the full {μl} profile in a compact form:

μl = |G+
l1|2μL + |G+

lM |2μR

|G+
l1|2 + |G+

lM |2
for l = 2, 3, . . . ,M − 1,M + 1, . . . , N, (3.4)

where G+
l1 and G+

lM are given in the appendix. This
derivation will not work for a {μl} profile with uniform finite
decoherence. The oscillations in the {μl} profile depend on
the Fermi energy and the applied magnetic flux through the
dispersion relation.

4. Persistent current in an open asymmetric ring: the
role of the eigenstates of the closed ring

In this section we investigate currents in a normal metallic ring
connected with source and drain asymmetrically, i.e. N1 
=
N2. Asymmetry is very much required to achieve persistent
current or a current magnification effect in the open ring in the
absence of a magnetic flux. We find an analytical expression
for conductance G(φ) between two contacts of the ring from
equation (2.6) by evaluating the Green’s function as given in
the appendix. To find persistent current or circulating current in
the ring, we have to know the currents in both arms of the open
ring separately. First we modify equation (2.5) to get current
expressions ju and jd in the up and down arms, respectively:

ju = ieγ γ ′′2

h̄4
(eiθG+

N M G−
M1 − e−iθG+

1M G−
M N )

× ρ(μM − μ1) (4.1)

jd = −ieγ γ ′′2

h̄4 (eiθG+
1M G−

M2 − e−iθG+
2M G−

M1)

× ρ (μM − μ1) (4.2)

with γ ′
1 = γ ′

M = γ ′′ and γ ′ = 0. Whenever current in an arm
of the asymmetric ring becomes larger than the total current
j between the source and drain a circulating current flows in

5
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Figure 6. Plot of the currents in the two arms ju, jd and the total
current j in the asymmetric ring with ideal leads γ ′′ = γ in the
absence of a magnetic flux φ. The inset shows the total current j for
tunnel barriers γ ′′ = 0.3γ . In both cases N = 18 and N1:N2 = 3:1.

the ring that is exactly equal to the current in the other arm.
This can be achieved by tuning the Fermi energy of the ring.
The phenomenon of getting a larger current in the arms than
the transport current is known as current magnification. The
conductance G(φ) of the normal metallic ring between two
contacts in the presence of magnetic flux is

G(φ) = 2πe2ρ2γ ′′4(−1)N−p|C0
1M |2

h̄5|�0
N |2

, (4.3)

where p, |C0
1M |2 and |�0

N | are given in the appendix. G(φ)
is defined as j = G(φ)�μ/e. Also we find from the
expressions in the appendix that G(φ) = G(−φ). Similarly,
exact expressions of the currents ju and jd in the up and down
arms of the ring can be evaluated. These expressions are quite
long and are not included here. In figure 6 we plot ju, jd and j
with changing Fermi energy of an asymmetric ring with ideal
leads γ ′′ = γ at the two contacts in the absence of magnetic
flux. Clearly for some values of Fermi energy the current flows
through one arm of the open ring only whereas other arm is
in a completely off condition. There are some special values
of Fermi energy where the total transmission from source to
drain goes to zero (<10−10). Around these Fermi energy values
the current magnification phenomenon arises. The asymmetric
pattern of total transmission around these antiresonances is
referred to as the Fano line shape.

We now determine the energy eigenvalues of the closed
ring from the tight-binding Hamiltonian. Energy eigenvalues
are Em = −2γ cos(2πm/N) with m = 1, 2 . . . N . For N =
18 and γ = 1, there are eight doubly degenerate eigenvalues,
±1.879 39, ±1.532 09, ±1, ±0.347 296 and two limiting
values ±2. We find the points of zero transmission are exactly
at these doubly degenerate eigenenergies. We suspect that
bound states of the total Hamiltonian exist as the transmission
goes to zero in the absence of an extended state from source
to drain. We will show below using an effective Hamiltonian
approach that indeed there are bound states embedded in the
continuum of scattering states (BIC). Also, different ratios
between the arm lengths, N1:N2, do change the transmission

line shape pattern but not the antiresonance positions in the
energy spectrum. In the inset of figure 6 we plot total current
j as a function of Fermi energy in the weak coupling limit
γ ′′ < γ . The transmission zeros at the doubly degenerate
eigenvalues still survive but the two neighbouring resonances
around it almost merge together and their widths get reduced
though the heights remain the same. Also, radiation shifts
of the positions of the resonant peaks relative to the energy
eigenvalues of the closed ring are observed in this regime. In
the strong coupling limit γ ′′ > γ the antiresonance points
remain fixed but the resonance peaks expand.

Effective Hamiltonian approach: Following [19] the
bound states are obtained as real solutions of the equation

[Hr + h̄	+
L (ω)+ h̄	+

R (ω)]|ψ〉 = λ|ψ〉, (4.4)

where 	+
L (ω) and 	+

R (ω) are self-energy corrections arising
from the interaction of the ring with the left and right
reservoirs, respectively. Eigenstates of the tight-binding closed
ring are given as

|ϕm〉 =
√

2

N

N∑

j=1

cos

(
2πm j

N

)
| j〉. (4.5)

Let us multiply 〈ϕm| from the left of both sides of
equation (4.4) and then introduce the closure relation∑N

n=1 |ϕn〉〈ϕn | = 1 for the isolated ring:

〈ϕm|[Hr + h̄	+
L (ω)+ h̄	+

R (ω)]

×
N∑

n=1

|ϕn〉〈ϕn|ψ〉 = λ〈ϕm |ψ〉. (4.6)

Using the definition of self-energies we get,

N∑

n=1

〈ϕm |Heff|ϕn〉〈ϕn |ψ〉 = λ〈ϕm |ψ〉
for m = 1, 2 . . . N, (4.7)

with

〈ϕm|Heff|ϕn〉 = Emδmn + g+(ω)

×
[
γ ′2

1

h̄
ϕ∗

m(1)ϕn(1)+ γ ′2
M

h̄
ϕ∗

m(M)ϕn(M)

]
,

where ϕn( j) = 〈 j |ϕn〉. Equation (4.7) ia a matrix eigenvalue
equation with Heff referred to as the non-Hermitian effective
Hamiltonian in S-matrix theory for transmission [24, 25].
Restricting the energy of the reservoirs’ electron in the
conduction band, i.e. |h̄ω| < 2γ , we evaluate the eigenvalues
of equation (4.7) numerically. The real values of λ are precisely
the doubly degenerate eigenvalues of the closed ring. So there
exist bound states at the energy values of Fano antiresonances.
Also a change in the strength or position of the reservoir–ring
couplings does not change the real eigenvalues of Heff. Only
the complex eigenvalues get changed. This explains why the
positions of the antiresonances remain same for the different
arm length ratios, or with weak or strong coupling.
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5. Discussion

In the present work we have removed the sensitivity of
dephasing by the external probe to its position in the bulk
and the boundary of the ring’s arm in the Büttiker single
probe model by coupling every site of the open ring with self-
consistent reservoirs. Of late the mesoscopic AB oscillations
have served as a measuring device for different mechanisms
of electron decoherence such as electron–electron scattering
and scattering off magnetic impurities [26–28]. Our extended
model will be useful for understanding those experiments
where the decoherence in the ring occurs uniformly because of
the interactions of conducting electrons with the other degrees
of freedom present in the system. There are other perfectly
valid models for uniform dephasing [14, 29]. However,
our extension is closer to experiments, as here the coupling
between the ring and the environment is direct and easily
tunable. Recently the resistance of single walled carbon
nanotubes has been studied [30] in a four-probe configuration
with non-invasive voltage electrodes. It was found that the
four-probe resistance fluctuates and can even become negative
at cryogenic temperatures due to quantum-interference effects
generated by elastic scatterers [22] in the nanotube. With
recent progress in experiments with quantum rings [31]
we believe that it is possible to detect the local chemical
potential oscillations in the open ring as predicted in the
present paper. Here we should mention that differences
between phase-sensitive and phase-insensitive measurements
are drastic for an effectively single channel transmission
problem compared to a multichannel conductor, where it
depends on the particular arrangement of probe coupling [22].
Further work is also required to investigate effects of static
disorder (elastic scatterer) and electron–electron interaction on
the local chemical potential oscillations. There is good scope
for studying the mutual effects of disorder and dissipation
in dissipative open quantum systems by introducing disorder
in the ring Hamiltonian through our extended model in the
quantum Langevin equation approach.

The Fano antiresonance occurs because of the interference
of a discrete autoionized state with a continuum. Here we
have shown for single channel transport in an asymmetric
open ring that the antiresonances occur exactly at the doubly
degenerate energy eigenstates of the closed ring in the absence
of evanescent modes. Also by finding the real eigenvalues
of the non-Hermitian effective Hamiltonian we predict the
existence of a BIC at these Fano antiresonance energy values.
Recently some more studies have found a BIC in an AB ring
and in a double cavity electron waveguide [32, 33]. Here we
emphasize that in case of single channel transport the total
transmission of an open symmetric ring never goes to zero
in the absence of magnetic flux. Finally bound states do not
contribute directly to the transport for non-interacting systems.
However, as suggested by a mean field calculation in [19],
they may affect the current by affecting the local density in the
presence of electron–electron interactions. It will be interesting
to see how the interactions between the electrons affect the
transmission zeros in an open asymmetric ring.
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Appendix. Evaluation of Green’s function

The full Green’s function is given as G+
lm = (h̄/γ )Z−1

lm where
Z is a near circulant matrix with off-diagonal terms Z N1 =
Zl l+1 = e−iθ for l = 1, 2 . . . N − 1 and Z1N = Zl−1 l = eiθ

for l = 2, 3 . . . N . The diagonal terms are given by:

Z11 = Z+
M M = A(ω) = h̄

γ

[
ω − γ ′′2

h̄2
g+(ω)

]

with γ ′
1 = γ ′

M = γ ′′,

Zll = B(ω) = h̄

γ

[
ω − γ ′2

h̄2 g+(ω)
]

for l = 2, 3 . . .M − 1,M + 1 . . . N.

(A.1)

Now using the method of [20] to determine the inverse and
determinant of the tri-diagonal matrix, we can find the required
inverse and determinant of the near circulant matrix Z through
simple but tedious algebra:

�N = ((A − 2 coshα)2(cosh[Nα] − cosh[pα])
− 4sinh2α((−1)N cos[Nθ ] − cosh[Nα])
+ 4 sinhα sinh[Nα](A − 2 coshα))/(2sinh2α)

with e±α = B

2
±

(
B2

4
− 1

)1/2

(A.2)

with p = N2 − N1. Similarly, the co-factor can be evaluated
following the above trick. Here we first find C1M and calculate
|C1M |2 which is relevant to determine the conductance G(φ)
of the asymmetric ring between the drain and source contacts:

|C1M |2 = 2[cosh NαR cosh pαR− cos NαI cos pαI

+ (−1)N {cos Nθ(cos pαI cosh NαR −cos NαI cosh pαR)

+ sin Nθ(sin pαI sinh NαR

− sin NαI sinh pαR)}]/(cosh 2αR − cos 2αI), (A.3)

where αR and αI are, respectively, real and imaginary parts of
α. For γ ′ = 0, the real part of α vanishes and the coefficient
of sin Nθ in |C1M |2 also disappears. We denote, |C1M |2γ ′=0 by

|C0
1M |2 and |�N |γ ′=0 by |�0

N |.
Finally we evaluate the Green’s function of equation (3.4),

where a single Büttiker probe is coupled to a middle site (l) of
the open ring. Here again Z11 = Z+

M M = A(ω), but all other
diagonal terms are h̄ω/γ except Zll = B(ω). The off-diagonal
terms remain the same as before. Following the above method
we calculate the Green’s function (l < M)

G+
l1 = (−1)l+1h̄

2γ�′
N sinh2 α′ [ei(l−1)θ {B(cosh[(N − l + 1)α′]

− cosh[(r + 1)α′])− 2 cosh[(N − l)α′] + cosh[rα′]
7
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+ cosh[(r + 2)α′]} + (−1)N ei(l−N−1)θ (cosh[lα′]
− cosh[(l − 2)α′])]
with e±α′ = h̄ω

2γ
±

(
h̄2ω2

16γ 2
− 1

)1/2

, (A.4)

where r = N − 2M + l. In this case, we do not need to
determine �′

N , the determinant of Z , as it gets cancelled in
equation (3.4). Similarly G+

lM can be evaluated.
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